Simulation of Particles with Different Coefficient of Restitution in Fluid Bed Coater

نویسندگان

  • R. ŠIBANC
  • R. DREU
  • S. SRČIČ
چکیده

Particle coating using fluid bed technology such as Wurster chamber is a common process in pharmaceutical technology. Coatings are used to achieve variety of functions, such as: taste masking, controlled release, increase of stability and others. Coating uniformity is one of the most important parameters of coated particles and can play an important role in the release of the active ingredient and is a result of number of process settings and material properties [1, 2]. One of the material parameter that effects particle movement and consequent coating is coefficient of restitution, which is defined as the ratio of particle velocity before and after the impact [3]. We have analysed the effect of coefficient of restitution on particle distribution and their velocity in the Wurster process chamber. Simulations were performed on a 2D axisymetric model using Ansys Fluent. Euler-Euler approach was used for simulation of gas and solid phase. The particle size was set at 1 mm and the coefficient of restitution was set from 0,1 to 1,0 in 0,1 steps. All other process parameters such as fluidizing and atomizing air flow were kept constant.10 s of two-phase flow was calculated in each simulation using timestep of 2.5*10 s, starting from the same initial condition. The analysis of the simulation has established that in most cases higher values of coefficient of restitution increase the particle volume fraction in the coating region of the chamber. The lowest value of volume fraction of particles in the coating region was 6.82% and the highest was 9.41%. It was established that coefficient of restitution has effect on particle velocity and flow rate through the coating region, however far less pronounced as in the case of volume fraction, which is one of the main factors that affects uniformity of coating. Therefore, according to our findings elastic properties of the particles can affect the outcome of the coating process i. e. coating functionality, even when using the same process chamber and process parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD simulation for segregation behavior of a ternary mixture in a bubbling fluidized bed: effect of solid wall boundary condition

Abstract The effect of the solid–wall boundary condition on the segregation behavior of a sand ternary mixture differing in size but having the same proportion has been investigated in a gas–solid bubbling fluidized bed. A multi-fluid computational fluid dynamics model incorporating the kinetic theory of granular flow has been used. The mass fraction profiles of the different-sized partic...

متن کامل

Evaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds

Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent  on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...

متن کامل

An Investigation of the Restitution Coefficient Impact on Simulating Sand-Char Mixing in a Bubbling Fluidized Bed

In the present work, the effect of the restitution coefficient on the numerical results for a binary mixture system of sand particles and char particles in a bubbling fluidized bed with a huge difference between the particles in terms of density and volume fraction has been studied based on two-fluid model along with the kinetic theory of granular flow. Results show that the effect of restituti...

متن کامل

DEVELOPMENT OF A PELLET SCALE MODEL FOR TRICKLE BED REACTOR USING CFD TECHNIQUES

In this study, a pellet scale model was developed for trickle bed reactor utilizing CFD techniques. Drag coefficients were calculated numerically at different velocities and bulk porosities in the case of single phase flow through the dry bed. The simulation results were then compared with the prediction of Kozeny-Carman (K-C) equation. The results indicated that drag coefficients calculated fr...

متن کامل

Numerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds

Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010